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Abstract

This work studies the Jacobians of certain singular transformations and the corre-
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of asseverations about the validity of some results by Zhang (2007) are discussed.
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1 Introduction

First consider the following notation: Let Lm,N(q) be the linear space of all
N×m real matrices of rank q ≤ min(N, m) and L+

m,N(q) be the linear space of
all N×m real matrices of rank q ≤ min(N,m), with q distinct singular values.
The set of matrices H1 ∈ Lm,N such that H′

1H1 = Im is a manifold denoted
Vm,N , called Stiefel manifold. In particular, Vm,m is the group of orthogonal
matrices O(m). Denote by Sm, the homogeneous space of m × m positive
definite symmetric matrices; and by S+

m(q), the (mq− q(q−1)/2)-dimensional
manifold of rank q positive semidefinite m × m symmetric matrices with q
distinct positive eigenvalues.

Assuming that X ∈ L+
m,N(q), Dı́az-Garćıa et al. (1997) proposed the Jaco-

bian of non-singular part of the singular value decomposition, X = H1DW′
1,
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where H1 ∈ Vq,N , D is a diagonal matrix with D1 > D2 > · · ·Dq > 0 and
W1 ∈ Vq,m. Also, note that the jacobian itself defines the factorization of
Hausdorff’s measure (dX) (or Lebesgue’s measure defined on the manifold
L+

m,N(q), see Billingsley (1986, p. 249)). Analogous results for V ∈ S+
m(q)

considering the non-singular part of the spectral decomposition of V were
proposed by Uhlig (1994) and Dı́az-Garćıa and Gutiérrez (1997). Based on
these two results, Dı́az-Garćıa and Gutiérrez-Jáimez (2005) and Dı́az-Garćıa
and Gutiérrez-Jáimez (2006) computed the jacobians of the transformations
Y = X+ and W = V+, where A+ denotes the Moore-Penrose inverse of A,
see Rao (1973, p.49).

Recently, Zhang (2007, Lemma 2 and 3) extends the above mentioned results
by assuming multiplicity in the singular values (of Y) and the eigenvalues (of
W); moreover, he proposes that his Lemma 3 is valid without the positive
semidefinite assumption for V (or W), respectively.

In the present work we proof that only some of the above propositions are
right, in fact, we will derive the correct corresponding results for Zhang (2007,
Lemma 2 and 3) under the same generalizations, and also we will determine
the explicit measures with respect the jacobians are computed, see Dı́az-Garćıa
(2007b).

2 Some comments about Zhang’s (2007) paper

The first observation about the Lemmas 2 and 3 in Zhang (2007, Last para-
graph p. 6) and the corresponding results derived in Dı́az-Garćıa and Gutiérrez-
Jáimez (2005) and Dı́az-Garćıa and Gutiérrez-Jáimez (2006) is inexact, be-
cause in the references the results are obtained by the singular value decom-
position (SVD). The right explanation should indicate that in Dı́az-Garćıa and
Gutiérrez-Jáimez (2005) and Dı́az-Garćıa and Gutiérrez-Jáimez (2006) the ja-
cobians are computed properly by the exterior product, meanwhile Zhang
(2007) proposes the same results by the jacobians of marginal transforma-
tions, without any proof but arguing that in general they are known from non
singular transformations.

The second observation concerns Lemma 3 in Zhang (2007, Last paragraph
p. 6): it is a general proposition, i.e. it has no explicit constrains, then we
can consider Lemma 3 valid for every singular symmetric matrix, thus, it is
valid for positive semidefinite matrices, for negative semidefinite matrices and
for indefinite matrices. Those asseverations are partially correct as we will
establish next and in Section 3.

The third observations involves the validity of Lemas 2 and 3 in Zhang (2007,
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Last paragraph p. 6) when there is multiplicity in the singular values of the
matrix X or multiplicity in the eigenvalues of the matrix V. In both cases the
proposition is wrong, as we will prove in Section 4.

Two general comments:

i) With respect to the second observation, it is clear that the proposition
holds for nonpositive definite matrices (i.e. for negative definite (A < 0) and
for negative semidefinite (A ≤ 0)). The particular lemma can be obtained
directly from the corresponding result of nonnegative definite matrices by
substituting the eigenvalues with their absolute value. A simple argument is
the following: if A ∈ Sm or A ∈ S+

m(q), then −A is a nonpositive definite
matrix and (dA) = (−dA), where (dA) denotes the exterior products of the
mathematical independent elements in the differential matrix dA = [daij],
Muirhead (1982) and James (1954).

ii) Unfortunately, Zhang (2007) does not specifies clearly the measure used
in the computation of the jacobians, but according with the explicit com-
parisons in Zhang (2007, Last paragraph p. 6) of his results with the analo-
gous results of Dı́az-Garćıa and Gutiérrez-Jáimez (2005) and Dı́az-Garćıa and
Gutiérrez-Jáimez (2006), we infer that his measures are the same considered
by Dı́az-Garćıa and Gutiérrez-Jáimez (2005) and Dı́az-Garćıa and Gutiérrez-
Jáimez (2006). This fact is extremely important, just recall that those mea-
sures are not unique and the corresponding jacobians are not unique as well;
but when a measure is particularly defined the respective jacobian is unique,
see Khatri (1968), Dı́az-Garćıa and González-Faŕıas (1999) and Dı́az-Garćıa
and González-Faŕıas (2005a).

3 Jacobian of symmetric matrices

Consider again A ∈ Sm, it remains to study: A as a (nonsingular) indefinite
matrix, i.e. A ∈ S±m(m1,m2), with m1 + m2 = m, where m1 is the number
of positive eigenvalues and m2 is the number of negative eigenvalues; and A
as a (singular) semi-indefinite matrix, i.e. A ∈ S±m(q, q1, q2), with q1 + q2 = q,
here q1 is the number of positive eigenvalues and q2 is the number of negative
eigenvalues.

First suppose A ∈ S±m(m1,m2) such that A = HDH′, where H ∈ O(m), D
is a diagonal matrix. Without loss of generality, let λ1 > · · · > λm1 > 0 and
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0 > −δ1 > · · · > −δm2 , explicitly

A = H




λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · λm1 0 · · · 0

0 · · · 0 −δ1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · −δm2




H′.

Now let A ∈ S±3 (1, 2) and let A = HDH′ be its SD, then

dA = dHDH′ + HdDH′ + HDdH′,

thus by the skew symmetry of H′dH we have, see Muirhead (1982, p. 105)

H′dAH = H′dHD + dD + DdH′H = H′dHD + dD−DH′dH

Moreover,

H′dAH=




0 −h′2dh1 −h′3dh1

h′2dh1 0 −h′3dh2

h′3dh1 h′3dh2 0







λ1 0 0

0 −δ1 0

0 0 −δ2




+




dλ1 0 0

0 −dδ1 0

0 0 −dδ2




−




λ1 0 0

0 −δ1 0

0 0 −δ2







0 −h′2dh1 −h′3dh1

h′2dh1 0 −h′3dh2

h′3dh1 h′3dh2 0




=




0 δ1h
′
2dh1 δ2h

′
3dh1

λ1h
′
2dh1 0 δ2h

′
3dh2

λ1h
′
3dh1 −δ1h

′
3dh2 0




+




dλ1 0 0

0 −dδ1 0

0 0 −dδ2




−




0 −λ1h
′
2dh1 −λ1h

′
3dh1

−δ1h
′
2dh1 0 δ1h

′
3dh2

−δ2h
′
3dh1 −δ2h

′
3dh2 0




=




dλ1 (λ1 + δ1)h
′
2dh1 (λ1 + δ2)h

′
3dh1

(λ1 + δ1)h
′
2dh1 −dδ1 (δ2 − δ1)h

′
3dh2

(λ1 + δ2)h
′
3dh1 (−δ1 + δ2)h

′
3dh2 −dδ2




.
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We know that (H′dAH) = (dA), then a column by column computation of
the exterior product of the subdiagonal elements of H′dHD + dD−DH′dH
gives, ignoring the sign,

(dA) = (λ1 + δ1)(λ1 + δ2)(−δ1 + δ2)




3∧

i=1

3∧

j=i+1

h′jdhi


 ∧ dλ1 ∧ −dδ1 ∧ −dδ2.

Recall that, if for example, the first element in each column of H is nonneg-
ative, so, the transformation A = HDH′ is 1 − 1. Then the corresponding
jacobian must be divided by 2m, see Muirhead (1982, pp. 104-105). Thus we
have

(dA) = 2−3(λ1 + δ1)(λ1 + δ2)(δ1 − δ2)(H
′dH) ∧ (dD),

where (H′dH) is the Haar measure on O(m) and

(H′dH) =
m∧

i<j

h′jdhi, (dD) = dλ1 ∧ dδ1 ∧ dδ2,

this is, (dD) is a exterior product of all differentials dλi and dδj ignoring the
sign.

Analogously, if A ∈ S±3 (2, 1),

(dA) = 2−3(λ1 − λ2)(λ1 + δ1)(λ2 + δ1)(H
′dH) ∧ (dD).

Similarly, let A ∈ S±4 (2, 2), then

(dA) = 2−4(λ1−λ2)(δ1− δ2)(λ1 + δ1)(λ1 + δ2)(λ2 + δ1)(λ2 + δ2)(H
′dH)∧ (dD).

By mathematical induction we have

Theorem 1 Let A ∈ S±m(m1,m2) such that A = HDH′, where H ∈ O(m),
D is a diagonal matrix with λ1 > · · · > λm1 > 0 and 0 > −δ1 > · · · > −δm2,
m1 + m2 = m. Then

(dA) = 2−m
m1∏

i<j

(λi − λj)
m1∏

i<1

(δi − δj)
m1,m2∏

i,j

(λi + δj)(H
′dH) ∧ (dD).

where

m1,m2∏

i,j

(λi+δj) =
m1∏

i=1

m2∏

j=1

(λi+δj), (H′dH) =
m∧

i<j

h′jdhi, (dD) =
m1∧

i=1

dλi

m2∧

j=1

dδj.

A similar procedure for A ∈ S±m(q, q1, q2) gives:

Theorem 2 Let A ∈ S±m(q, q1, q2) such that A = H1DH′
1, where H1 ∈ Vq,m,

D is a diagonal matrix with λ1 > · · · > λq1 > 0 and 0 > −δ1 > · · · > −δq2,
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q1 + q2 = q. Then

(dA) = 2−q
q1∏

i=1

λm−q
i

q2∏

j=1

δm−q
j

q1∏

i<j

(λi−λj)
q1∏

i<1

(δi−δj)
q1,q2∏

i,j

(λi+δj)(H
′dH)∧(dD).

where

q1,q2∏

i,j

(λi+δj) =
q1∏

i=1

q2∏

j=1

(λi+δj), (H′
1dH1) =

m∧

i=1

q∧

j=i+1

h′jdhi, (dD) =
q1∧

i=1

dλi

q2∧

j=1

dδj.

4 Jacobians of symmetric matrices with multiplicity in its eigen-
values

As a motivation of this section, consider a general random matrix A ∈ Rm×m,
explicitly

A =




a11 · · · a1m

...
. . .

...

am1 · · · amm




.

Any density function of this matrix can be expressed as

dFA(A) = fA(A)(dA),

where dA denotes the measure of Lebesgue in Rm2
, which can be written by

using the exterior product, as

(dA) =
m∧

i=1

m∧

j=1

daij,

see Muirhead (1982).

However, if A ∈ Sm and it is non singular, then the measure of Lebesgue
defined in Sm is given by

(dA) =
m∧

i≤j

daij. (1)

Remark 3 Note that the above product is the measure of Hausdorff on Rm2

defined on the homogeneous space of positive definite symmetric matrices, see
Billingsley (1986)

In general, we can consider any factorization of the Lebesgue measure (dA)
on Sm as an alternative definition of (dA) with respect to the corresponding
coordinate system. For example, if we consider the spectral decomposition
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(SD), A = HDH′, where H ∈ O(m), and D is a diagonal matrix with D1 >
· · · > Dm > 0 or we consider the Cholesky decomposition A = T′T, where T
is upper-triangular with positive diagonal elements, then we have respectively

dA =





2−m
m∏

i<j

(Di −Dj)(H
′dH) ∧ (dD), Spectral decomposition;

2m
m∏

i=1

tm+1−i
ii (dT), Cholesky decomposition,

see Dı́az-Garćıa and González-Faŕıas (2005a), where

(H′dH) =
m∧

i<j

h′jdhi, (dD) =
m∧

i=1

dDi and (dT) =
m∧

i≤j

dtij.

In some occasions is difficult to establish an explicit form of the Lebesgue o
Hausdorff measures in the original coordinate system. In particular if A ∈
S+

m(q) some unsuccessful efforts have been trailed, see Srivastava (2003) and
Dı́az-Garćıa (2007a). A definition of such measure in terms of the SD is given
by Uhlig (1994):

(dA) = 2−q
q∏

i=1

Dm−q
i

q∏

i<j

(Di −Dj)(H1dH1) ∧ (dD), (2)

where H1 ∈ Vq,m, D is a diagonal matrix with D1 > · · · > Dq > 0 and

(H′
1dH1) =

m∧

i=1

m∧

j=i+1

h′jdhi, (dD) =
q∧

i=1

dDi;

for alternative expressions of dA in terms of other factorizations see Dı́az-
Garćıa and González-Faŕıas (2005a) and Dı́az-Garćıa and González-Faŕıas
(2005b).

Now suppose that one (or more) eigenvalue(s) of A ∈ Sm has (have) multi-
plicity. Then consider A = HDH′, where H ∈ O(m), D is a diagonal matrix
with D1 ≥ · · · ≥ Dm > 0. Moreover, let Dk1 , . . . Dkl

be the l distinct eigen-
values of A, i.e. Dk1 > · · · > Dkl

> 0, where mj denotes the repetitions of
the eigenvalue Dkj

, j = 1, 2, . . . , l, and of course m1 + · · ·ml = m; finally
denote the corresponding set of matrices by A ∈ S l

m. It is clear that A ex-
ists in the homogeneous subspace of the symmetric matrices with dimension
m(m + 1)/2 of rank m; more accurately, when there exist multiplicity in the
eigenvalues, A exists in the manifold of dimension ml− l(l−1)/2, even exactly
for computations we say that A ∈ S+

m(l). For proving it, consider the matrix
B ∈ S2, such that S = HDH′, here H ∈ O(2), and D is a diagonal matrix
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with D1 ≥ D2 > 0 where D1 = D2 = κ, then the measure

(dB) = 2−2
2∏

i<j

(Di −Dj)(H
′dH) ∧ dD = 2−2(κ− κ)(H′dH) ∧ dD = 0.

Also note that, in fact the measure (dD) = dD1 ∧ dD2 = dκ∧ dκ = 0. This is
analogous to the following situation, to propose for a curve in the space (R3)
the measure of Lebesgue defined by dx1 ∧ dx2.

Now, when we consider the factorization of the measure of Lebesgue in terms
of the spectral decomposition, we do not have 2(2 + 1)/2 = 3 but only 2(1)−
1(1 + 1)/2 + 1 = 2 mathematical independent elements in B, because in D,
D1 = D2 = κ and then there is only one mathematical independent element.

Also, observe that the space of positive definite m×m matrices is a subset of
Euclidian space of symmetric m×m matrices of dimension m(m + 1)/2, and
in fact it forms an open cone described by the following system of inequalities,
see Muirhead (1982, p. 61 and p. 77 Problem 2.6):

A > 0 ⇔ a11 > 0, det




a11 a12

a21 a22


 > 0, · · · , det(A) > 0. (3)

In particular, let m = 2, after factorizing the measure of Lebesgue in Sm by
the spectral decomposition, the inequalities (3) are as follows

A > 0 ⇔ D1 > 0, D2 > 0, D1D2 > 0. (4)

But if D1 = D2 = κ, (4) it reduces to

A > 0 ⇔ κ > 0, κ2 > 0. (5)

Which defines a curve (a parabola) in the space, over the line D1 = D2(= κ)
in the subspace of points (D1, D2).

A similar situation appear in the following cases: i) When we consider multi-
plicity of the singular values in the SVD; such set of matrices will be denoted
by X ∈ Ll

m,N(q), q ≥ l; or by X ∈ L+
m,N(q, l) q ≥ l; ii) If we consider mul-

tiplicity in the eigenvalues; the corresponding set of matrices will be denoted
by A ∈ S+

m(q, l), q ≥ l; iii) And if A is nonpositive definite.

Thus, unfortunately, we must qualify as incorrect the asseverations of Zhang
(2007) about the validity of his Lemmas 2, 3 and consequences, under multi-
plicity assumptions of singular values and eigenvalues.

8



 
 
As a summary we have the next results, which collect the main conclusions of
Section 3 and the present section, and follow a similar proof of Theorem 1 in
Dı́az-Garćıa and Gutiérrez-Jáimez (2006):

Theorem 4 Consider Y ∈ Lm,N(q) and Y = X+, then

(dY) =
k∏

i=1

σ
−2(N+m−k)
i (dX)

where X = H1DσP
′
1 is the nonsingular part of SVD of X, with H1 ∈ Vk,N ,

P1 ∈ Vk,m, Dσ = diag(σ1, . . . , σk), σ1 > · · · > σk > 0, the measure (dX) is

(dX) = 2−k
k∏

i=1

σ
(N+m−2k)
i

k∏

i<j

(σ2
i − σ2

j )(H
′
1dH1) ∧ (P′

1dP1) ∧ (dDσ),

and

k =





q, X ∈ L+
m,N(q);

l, X ∈ L+
m,N(q, l).

Similarly, for symmetric matrices we have,

Theorem 5 Let V ∈ Rm×m be a symmetric matrix and let W = V+, then

(1)

(dW) =
β∏

i=1

|λi|−2m+β−1(dV),

where V = H1DλH
′
1 is the nonsingular part of SD of V, with H1 ∈ Vβ,N ,

Dλ = diag(λ1, . . . , λβ), |λ1| > · · · > |λβ| > 0, the measure (dV) is

(dV) = 2−β
β∏

i=1

|λi|m−β
β∏

i<j

(|λi| − |λj|)(H1dH1) ∧ (dDλ),

and

β =





m, V or −V ∈ Sm;

l, V or −V ∈ S l
m;

q, V or −V ∈ S+
m(q);

k, V or −V ∈ S+
m(q, k).

(2)

(dW) =
α1∏

i=1

λ
−2(m−α1/2−α2+1)
i

α2∏

j=1

δ
−2(m−(α−1)/2)
j (dV),

where α = α1+α2, V = H1DH′
1 is the nonsingular part of SD of V, with

H1 ∈ Vα,N , D = diag(λ1, . . . , λα1 ,−δ1, . . . ,−δα1), λ1 > · · · > λα1 > 0;
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|δ1| > · · · > |δα2| > 0, the measure (dV) is

(dV) = 2−α
α1∏

i=1

λm−α
i

α2∏

j=1

δm−α
j

α1∏

i<j

(λi−λj)
α1∏

i<1

(δi−δj)
α1,α2∏

i,j

(λi+δj)(H
′dH)∧(dD).

and

α =





m, V ∈ S±m(m1,m2);

l, V ∈ S±m(l1, l2);

q, V ∈ S±m(q, q1, q2);

k, V ∈ S±m(q, k1, k2),

and V ∈ S±m(l1, l2) denotes a nonsingular indefinite matrix with multiplic-
ity in its eigenvalues and V ∈ S±m(q, k1, k2) denotes a singular indefinite
matrix with multiplicity in its eigenvalues.

5 Conclusions

This work determines the jacobians of the SVD and the SD under multiplicity
of the singular values and eigenvalues, respectively. For the SD case, we com-
pute the jacobian for nonsingular and singular indefinite matrices with and
without multiplicity in their eigenvalues. Also, we calculate the jacobians for
a general matrix and its Moore-Penrose inverse, and for a symmetric matrix
with all its variants (nonpositive, nonnegative and indefinite). In every case
we specify the measures of Hausdorff which support the jacobian computa-
tions. These results detecte and correct some inconsistences in the validity of
Lemmas 2 and 3 by Zhang (2007). We highlight that the results of this paper
will be the foundations of an explored problem in literature: the test criteria in
MANOVA when there exist multiplicities in: the matrix of sum of squares and
sum of products, due to the hypothesis SH ; the matrix of sum of square and
sum of products, due to the error SE; the matrices SHS−1

E ; (SH + SE)−1SH ;
see Dı́az-Garćıa (2007c).
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J. A. Dı́az-Garćıa, R. Gutiérrez-Jáimez, and K. V. Mardia, Wishart and

Pseudo-Wishart distributions and some applications to shape theory, J.
Multivariate Anal. 63 (1997) 73-87.
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